Question		on	Expected Answers	Marks	Additional Guidance
1	а		A (clean) zinc plate mounted on the cap of a gold-leaf electroscope.	B1	first 3 marks can be awarded from diagram
			Plate initially charged negatively	B1	or description
			A u-v lamp shining on plate	B1	
			The gold leaf collapses as the charge leaks away from the plate (when		
			ultra-violet light is incident on the zinc plate)	B1	
			so experiment indicates the emission of negative charge/electrons	B1	QWC mark
		Or	A simple photocell, eg two plates in a vacuum envelope	B1	accept photocell made of clean magnesium
			A (12 V) dc supply is connected to the photocell and (nano)ammeter.	B1	ribbon surrounded by fine copper gauze
			A suitable frequency/u-v lamp shining on one plate	B1	first 3 marks can be awarded from diagram
					or description
			The presence of u-v /blue light causes a current in the circuit.	B1	ignore polarity of supply
			so experiment indicates the emission of negative charge/electrons	B1	QWC mark
		Or	A (potassium) photocell connected across a (high impedance) voltmeter.	B1	first 3 marks can be awarded from diagram
			Incident light of different frequencies;	B1	or description
			produced either by white light source and colour filters of known spectral		
			range or by using a diffraction grating or prism to produce a first order		
			spectrum.	B1	
			Different p.d.s are set up across the electrodes of the photocell (when the		
			photocathode is illuminated with light of different frequencies).	B1	
			so experiment indicates the emission of negative charge	B1	QWC mark
	_				
	b		Individual photons are absorbed by individual electrons in the metal		stop marking after the first five marking
			surface.		points, le ticks and crosses
			These electrons must have absorbed sufficient energy to overcome the	-	not photons are absorbed by electrons; 1
			work function energy of the metal/to reach the minimum energy to	B1	to 1 relationship must be implied
			release an electron from the surface or only photons with energies above		accept definition of work function energy
			the work function energy will cause photoelectron emission		
			Concept of instantaneous emission		accept shorter A/higher f photon causes
			Number of electrons emitted also depends on light intensity	B1	higher (kinetic) energy electron
			Einstein's photoelectric energy equation in symbols	BI	
			with symbols explained, ie (energy of photon) = (work function of metal) +	B1	
			(maximum possible kinetic energy of emitted electron)	81	
					accept full word equation without symbols
				BJ	TOT 2 MARKS
					maximum 5 marks
			Total question 7	10	

Question		on	Answer	Marks	Guidance
2	(a)		the energy of an electron ✓ equals the energy of the (emitted) photon ✓	B1 B1	 alt: the electron energy ✓ is converted into the energy of the emitted photon ✓ or the minimum energy ✓ of an electron required to produce a photon ✓/AW
A A A	(b)		Adjust the potential divider to low/zero voltage connect flying lead to one LED increase voltage until LED just lights/strikes repeat several times and average to find V _{min} repeat for each LED shield LED inside opaque tube to judge strike more accurately	B1 B1 B1 B1 B1 B1	max 3 marks
A A A	(c)	(values of $1/\lambda$ calculated correctly: 2.14 and 2.43 2 points plotted correctly line of best fit drawn through origin gradient = 1.24 x 10 ⁻⁶ (V m)	B1 B1 B1 B1	 not 2.13 unless this is second rounding error in paper ecf calculated values in table working must be shown to score the mark allow ecf for correct gradient from line drawn
		(ii)	gradient of line = V λ from eV = hc/ λ V λ = hc/e	B1 B1	must have clear indication that V λ is gradient of graph
		(iii)	1.24 x $10^{-6} = hc/e$ h = 1.24 x 10^{-6} x 1.6 x $10^{-19}/ 3.0 \times 10^{8}$ h = 6.6(1) x 10^{-34} (J s)	M1 A1	ecf (c)(i) correct substitution into equation mark ans = 5.3 x grad (ignoring all powers of 10)
			Total	13	

Question		ion	Answer	Marks	Guidance
3	(a)	(photoelectric effect (experiment) or (discrete) counting of gamma rays or Compton effect	B1	NOT the gold leaf/ the zinc plate experiment, etc.
		(ii)	Young's slits (experiment)	B1	accept any interference/diffraction <u>experiment</u> , e.g. <u>using</u> a diffraction grating, a double slit <u>experiment</u> , etc.
	(b)	(i)	ϕ is the minimum energy required to release an electron from the metal/surface	B1	allow escape from
		(ii)	$KE_{max} = hf - \phi$ or $hf = \phi + KE_{max}$ the straight line equation is $y = mx + c$ (where m is the	B1	can be copied from the data sheet
			gradient and c the y-intercept)	M1	
			hence giving $c = (-) \phi$ and $m = h$	A1	
		(iii)1	h = $32 \times 10^{-20}/5 \times 10^{14}$ or $40 \times 10^{-20}/6.25 \times 10^{14}$ or $20 \times 10^{-20}/3 \times 10^{14}$ etc	M1	any sensible attempt at gradient gains 1 mark
			$= 6.4 \times 10^{-34} (J s)$	A1	check that answer is consistent with figures and not just quoted, e.g. 6.7 for third set of data above
		(iii)2	$8.75 \pm 0.25 \times 10^{14}$ (Hz)	B1	tolerance is to within the grid square
		(iii)3	$\alpha = 6.4 \times 10^{-34} \times 8.75 \times 10^{14}$	C1	acf (b)(iii)1 2 or acf b(iii) 2 x 6 6(3) x 10^{-34}
		(11)5	$\varphi = 0.4 \times 10^{-19} (1)$		ans $-1 \times 2^{\circ} 5.8 \times 10^{-19}$ (1) if use h -6.6×10^{-34}
					allow use of $\alpha = hf - KF_{max}$ at (15.40) for example
<u> </u>	l		1		
			Total	11	

Question		on	Expected Answers	Μ	Additional Guidance
4					
	а	i	(sum of/total) current into a junction equals the (sum of/total)	B1	total vector sum of currents is zero
			current out	B1	
			conservation of charge		
		ii	(sum of) e.m.f.s = (sum /total of) p.d.s/sum of voltages in/around	B1	
			a (closed) loop (in a circuit)		
			energy is conserved	B1	
	b		a photon is absorbed by an electron (in a metal surface);	B1	not hits
			causing electron to be emitted (from surface).	B1	
			Energy is conserved (in the interaction).	B1	QWC mark
			Only photons with energy/frequency above the work function		3 marks from 6 marking points
			energy/threshold frequency will cause emission	B1	
			Reference to Einstein's photoelectric energy equation		in symbols only scores 1 mark out of 2, i.e.
			(energy of photon) = (work function of metal) + (maximum		selects from formula sheet
			possible kinetic energy of emitted electron)	B2	
			work function energy is the <u>minimum</u> energy to release an		
			electron from the surface	B1	
			Number of electrons emitted also depends on light intensity	B1	
			Emission is instantaneous	B1	
			Total question 5	10	